Maximum Allowable Dynamic Payload for Flexible Mobile Robotic Manipulators

نویسندگان

  • M. H. KORAYEM
  • H. N. RAHIMI
  • A. NIKOOBIN
  • M. NAZEMIZADEH
چکیده

Finding the full load motion for a point-to-point task can maximize the productivity and economic usage of the mobile manipulators. The presented paper proposes a technique to determine the maximum allowable dynamic payload for flexible mobile manipulators along with the obtained optimal trajectories. Non-linear modeling of the mobile robotic manipulators by considering both link and joint flexibility is presented; then, optimal motion planning of the system is organized as an optimal control formulation. By employing indirect solution of the problem, optimal maximum payload path of such robots is designed for a general objective function. The paper specially focuses on effects of various important parameters on the maximum payload determination and analyzes them thoroughly. The effectiveness and capability of the proposed method is investigated through various simulation studies. The obtained results illustrate the influences of the performance index, operating time and robot characteristics on the maximum payload path.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Allowable Dynamic Load of Flexible 2-Link Mobile Manipulators Using Finite Element Approach

In this paper a general formulation for finding the maximum allowable dynamic load (MADL) of flexible link mobile manipulators is presented. The main constraints used for the algorithm presented are the actuator torque capacity and the limited error bound for the end-effector during motion on the given trajectory. The precision constraint is taken into account with two boundary lines in plane w...

متن کامل

Dynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle

In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many diffic...

متن کامل

Maximum Allowable Load On Wheeled Mobile Manipulators (RESEARCH NOTE)

This paper develops a computational technique for finding the maximum allowable load of mobile manipulators for a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints a...

متن کامل

An Analysis of the Finite Element Method Applied on Dynamic Motion and Maximum Payload Planning of Flexible Manipulators

This paper is concerned with the dynamic motion analysis and the planning of maximum payload path of flexible manipulators. The finite element method was employed for dynamic modelling of the system and the motion of the model was considered as a combination of the rigid displacement and the elastic deformation of each link. Each manipulator link was treated as a finite number of elements and t...

متن کامل

Dynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach

This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013